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When collecting X-ray diffraction data from a crystal, we

measure the intensities of the diffracted waves scattered from

a series of planes that we can imagine slicing through the

crystal in all directions. From these intensities we derive the

amplitudes of the scattered waves, but in the experiment we

lose the phase information; that is, how we offset these waves

when we add them together to reconstruct an image of our

molecule. This is generally known as the ‘phase problem’.

We can only derive the phases from some knowledge of the

molecular structure. In small-molecule crystallography, some

basic assumptions about atomicity give rise to relationships

between the amplitudes from which phase information can be

extracted. In protein crystallography, these ab initio methods

can only be used in the rare cases in which there are data to at

least 1.2 Å resolution. For the majority of cases in protein

crystallography phases are derived either by using the atomic

coordinates of a structurally similar protein (molecular

replacement) or by finding the positions of heavy atoms that

are intrinsic to the protein or that have been added (methods

such as MIR, MIRAS, SIR, SIRAS, MAD, SAD or com-

binations of these). The pioneering work of Perutz, Kendrew,

Blow, Crick and others developed the methods of isomor-

phous replacement: adding electron-dense atoms to the protein

without disturbing the protein structure. Nowadays, methods

from small-molecule crystallography can be used to find the

heavy-atom substructure and the phases for the whole protein

can be bootstrapped from this prior knowledge. More recently,

improved X-ray sources, detectors and software have led to the

routine use of anomalous scattering to obtain phase informa-

tion from either incorporated selenium or intrinsic sulfurs.

In the best cases, only a single set of X-ray data (SAD) is

required to provide the positions of the anomalous scatters,

which together with density-modification procedures can

reveal the structure of the complete protein.
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1. Introduction

1.1. Phasing

There are many excellent comprehensive texts on macro-

molecular crystallography that include sections on phasing

methods (Blundell & Johnson, 1976; Drenth, 1994, 2006; Blow,

2002; Lattman & Loll, 2008; Rhodes, 2006; McPherson, 2009;

Rossmann & Arnold, 2001; Rupp, 2009). This introduction to

the CCP4 Study Weekend on Experimental Phasing attempts

to give an overview of phasing for those new to the field. Many

entering protein crystallography come from a biological

background and are unfamiliar with the details of Fourier

summation and complex numbers. The routine incorporation



of selenomethionine into proteins, the

wide availability of synchrotrons and

improvements in detector technology

and in software mean that in many cases

structure solution has become ‘black

box’. Not all structure solutions are

plain sailing, however, and it is still

useful to have some understanding of

phasing. Here, we will emphasize the

importance of phases, describe how

phases are derived from some prior

knowledge of structure and look briefly

at phasing methods (direct, molecular

replacement and heavy-atom isomor-

phous replacement). In most heavy-atom phasing methods the

aim is to preserve isomorphism, such that the only structural

change upon heavy-atom substitution is local and there are no

changes in unit-cell dimensions or the orientation of the

protein in the cell. Single-wavelength and multiwavelength

anomalous diffraction (SAD/MAD) experiments normally

achieve this as in the absence of radiation damage iso-

morphism is preserved when all diffraction data are collected

from a single crystal. Where non-isomorphism does occur, this

can be used to provide phase information and we will look at

an example in which non-isomorphism was used to extend

phases from 6 to 2 Å.

In the diffraction experiment (Fig. 1), we measure on a

detector the intensities of waves scattered from planes

(denoted by hkl) in the crystal. The intensity value is a

measure of the number of electrons present in one particular

plane. The amplitude of the wave |Fhkl| is proportional to the

square root of the intensity. To calculate the electron density

at a position (xyz) in the unit cell of a crystal we need to

perform the following summation over all the hkl planes. In

words, we can express this as the electron density at (xyz) is the

sum of the contributions to the point (xyz) of a wave scattered

from a plane (hkl) whose amplitude depends on the number of

electrons in the plane added with the correct relative phase

relationship or, mathematically,

�ðxyzÞ ¼
1

V

P
jFhklj expði�hklÞ exp½�2�iðhxþ kyþ lzÞ�; ð1Þ

where V is the volume of the unit cell and �hkl is the phase

associated with the structure-factor amplitude |Fhkl|. We can

measure the amplitudes, but the phases are lost in the

experiment. This is the phase problem.

1.2. The importance of phases

The importance of phases in producing the correct electron

density, or structure, is illustrated in Figs. 2 and 3. In Fig. 2

three ‘electron-density waves’ are added in a unit cell, which

shows the dramatically different electron density resulting

from adding the third wave with a different phase angle.

In Fig. 3, from Kevin Cowtan’s Book of Fourier

(http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html), the

importance of phases in carrying structural information is

beautifully illustrated. The calculation of an ‘electron-density
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Figure 1
The diffraction experiment.

Figure 2
(a) The definition of a phase angle �. (b) The result of adding three waves,
where the third wave is added with two different phase angles.



map’ using amplitudes derived from the diffraction of a duck

and phases derived from the diffraction of a cat results in a cat:

the phases carry much more information.

2. Recovering the phases

There is no formal relationship between the amplitudes and

their phases; the only relationship is via the molecular struc-

ture or electron density. Therefore, if we can assume some

prior knowledge of the electron density, or structure, this can

lead to values for the phases. This is the basis for all phasing

methods, including phase improvement or density modifica-

tion (Table 1).

2.1. Direct methods

Direct methods are based on the positivity and atomicity of

electron density that leads to phase relationships between the

(normalized) structure factors, for which Hauptmann and

Karle shared the 1985 Nobel Prize in Chemistry (see

their Nobel lectures at http://nobelprize.org/nobel_prizes/

chemistry/laureates/1985/). The triplet relation (2) shows how

the phases of three reflections are related. For example,

consider the case where h is the (2, 3, 5) reflection and h0 is the

(1, 0, 3) reflection, such that h � h0 is therefore (1, 3, 2). The

triplet relationship shows that the sum of the phases of the

(�2,�3,�5), (1, 0, 3) and (1, 3, 2) reflections is approximately

zero. Therefore, knowing the phases of two reflections allows

one to derive the phase of a third. The tangent formula (3) is

an equation derived for phase refinement based on the triplet

relationship,

��h þ �h0 þ �h�h0 ’ 0; ð2Þ

tan �h ¼
hEh0Eh�h0 sinð�h0 þ �h�h0 Þih0

hEh0Eh�h0 cosð�h0 þ �h�h0 Þih0
; ð3Þ

where E represents the normalized structure-factor amplitude;

that is, the amplitude that would arise from point atoms at rest.

Such equations imply that once the phases of some reflections

are known, or can be given a variety of starting values, then

the phases of other reflections can be deduced, leading to a

bootstrapping to obtain phase values for all reflections. The

requirement of what is for proteins very high-resolution data

(<1.2 Å) has limited the usefulness of ab initio phase deter-

mination in protein crystallography, although direct methods

have been used to phase small proteins (up to �1000 atoms).

This high-resolution requirement of 1.2 Å, or the so-called

Sheldrick’s rule (Sheldrick, 1990), has been given a structural
basis with respect to proteins (Morris &

Bricogne, 2003). However, direct

methods are routinely used to find the

heavy-atom substructure by programs

such as Shake-and-Bake (SnB; Miller et

al., 1994), SHELXD (Sheldrick, 2008),

ACORN (Foadi et al., 2000) and HySS

(Grosse-Kunstleve & Adams, 2003).

2.2. Molecular replacement (MR)

When a structurally similar model is

available, molecular replacement can be

successful, using methods first described

by Michael Rossmann and David Blow

(Rossmann & Blow, 1962). As a rule of

thumb, a sequence identity of >25% is

normally required together with an

r.m.s. deviation of <2.0 Å between the

C� atoms of the model and the new

structure, although there are exceptions

to this. Molecular replacement usually

employs the Patterson function. A

Patterson map is calculated using the

same Fourier summation that is used to

calculate an electron-density map but

with (Fhkl)
2, or intensities, as the coeffi-
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Figure 3
The importance of phases in carrying information. Top, the diffraction pattern, or Fourier transform
(FT), of a duck and of a cat. Bottom left, a diffraction pattern derived by combining the amplitudes
from the duck diffraction pattern with the phases from the cat diffraction pattern. Bottom right, the
image that would give rise to this hybrid diffraction pattern. In the diffraction pattern, different
colours show different phases and the brightness of the colour indicates the amplitude. Reproduced
courtesy of Kevin Cowtan.

Table 1
Methods used in structural solution.

Method Prior knowledge

Direct methods � � 0, discrete atoms
Molecular replacement Structurally similar model
Isomorphous replacement Heavy-atom substructure
Anomalous scattering Anomalous-atom substructure

Density modification Solvent flattening
(phase improvement) Histogram matching

Noncrystallographic symmetry averaging
Automatic partial structure detection
Phase extension



cients and therefore does not require knowledge of the phases.

The resulting map is the convolution of the electron density

with itself and provides a map that has peaks at interatomic

vectors rather than at absolute atomic positions. A Patterson

map can also be calculated using amplitudes calculated from

the atomic coordinates of a structurally similar model and

rotated over a Patterson map calculated from the structure-

factor amplitudes of the new crystal to obtain the orientation

of the model in the new unit cell. The translation of the

correctly oriented model relative to the origin of the new unit

cell can be found using similar Patterson methods through a

search for vectors between symmetry-related molecules in the

new unit cell, although other methods can be employed

(Fig. 4).

2.3. Isomorphous replacement

The use of heavy-atom substitution to solve the phase

problem was invented very early on by small-molecule crys-

tallographers, for example the isomorphous crystals (same

unit cells) of CuSO4 and CuSeO4 (Groth, 1908). The changes

in intensities of some classes of reflections were used by

Beevers & Lipson (1934) to locate the Cu and S atoms. It was

Max Perutz and John Kendrew who first applied the method

to proteins (Perutz, 1956; Kendrew et al., 1958) by soaking

protein crystals in heavy-atom solutions to create isomor-

phous heavy-atom derivatives (same unit cell, same orienta-

tion of the protein in cell), which gave rise to measurable

intensity changes that could be used to deduce the positions of

the heavy atoms (Fig. 5).

Francis Crick is best known for his contribution to the

structure of DNA, but he also made several contributions to

macromolecular crystallography, including estimating the

magnitude of the expected changes in the intensities of the

reflections in isomorphous replacement (Crick & Magdoff,

1956). For example, the addition of a single Hg atom to a

protein of 1000 atoms is predicted to produce an average

fractional change of intensity of 25% using the formula

�I

I

� �
¼

NH

2Np

� �1=2
fH

fp

; ð4Þ

where NH and fH are the number of heavy atoms and their

scattering factor at sin� = 0� and Np and fp are the number of

light atoms and their scattering factor at sin� = 0�, respectively.

The same paper also shows that for a 100 Å cubic unit cell a

0.5% change in unit-cell dimensions or a 0.5� rotation of the

molecule within the unit cell would produce an average 15%

change in intensity. Isomorphism is therefore critical.

In the case of a single isomorphous replacement (SIR)

experiment, the contribution of the added heavy atom to the

structure-factor amplitude and phases is best illustrated on an

Argand diagram, which shows a plot of the real and imaginary

axes of the complex plane (Fig. 6). The amplitudes of a

reflection are measured for the native crystal, |FP|, and for

the derivative crystal, |FPH|. The isomorphous difference,

|FH| ’ |FPH| � |FP|, can be used as an estimate of the heavy-

atom structure-factor amplitude to determine the heavy

atom’s positions using Patterson or direct methods. Once

located, the heavy-atom parameters (xyz positions, occu-

pancies and Debye–Waller thermal factors B) can be refined

and used to calculate a more accurate |FH| and its corre-

sponding phase �H. The native protein phase, �P, can be

estimated using the cosine rule (Fig. 7),

�P ¼ �H � cos�1
½ðF2

PH � F2
P � F2

HÞ=2FPFH�; ð5Þ

leading to two possible solutions symmetrically distributed

about the heavy-atom phase.
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Figure 5
Two protein diffraction patterns superimposed and shifted vertically
relative to one another. One is from native bovine �-lactoglobulin and the
other is from a crystal soaked in a mercury-salt solution. Note the
intensity changes for certain reflections and the identical unit cells
(spacing of the spots) suggesting isomorphism. (Photograph courtesy of
Professor Lindsay Sawyer.)

Figure 4
The process of molecular replacement.



This phase ambiguity is better illustrated in the Harker

construction (Fig. 8). The two possible phase values occur

where the circles intersect. The problem then arises as to

which phase to choose. This requires a consideration of phase

probabilities.

3. Phase probability

In reality, there are errors associated with the measurements

of the structure factors, scaling and non-isomorphism errors,

and errors in the derived heavy-atom positions and their

occupancies, such that the vector triangle of Fig. 6 seldom

closes. David Blow and Francis Crick (Blow & Crick, 1959)

introduced the concept of lack of closure " (6) and its use in

defining a phase probability (7) (Fig. 9),

" ¼ jFPHðobsÞj � jFPHðcalcÞj

¼ jFPHðobsÞj �
��½jFPj expði�PÞ þ jFHj expði�HÞ�

��: ð6Þ

Making the assumption that all the errors reside in FPH(calc)

and that errors follow a Gaussian distribution, the probability

of a phase having a certain value is then

Pð�PÞ / expð�"2=2E2Þ; where E ¼ h½FPHðobsÞ � FPHðcalcÞ�
2
i:

ð7Þ

One could, for example, calculate such a probability from 0� to

360� in 10� intervals to produce a phase-probability distribu-

tion, the shape of which can be represented by four coeffi-

cients of a polynominal: the so-called Hendrickson–Lattman

coefficients HLA, HLB, HLC and HLD (Hendrickson &

Lattman, 1970). Blow and Crick also showed that an electron-

density map calculated with a weighted amplitude repre-

senting the centroid of the phase distribution gave the least

error. Fig. 10 shows the phase probability distribution for

one reflection from an SIR experiment. The centroid of the

distribution is denoted by Fbest, the amplitude of which is

the native amplitude |FP| multiplied by the figure of merit m,

which is an estimate of the cosine of the phase error. Modern

phasing programs now use maximum-likelihood methods that

use advanced probability distributions that better model an

experiment and thus obtain better estimates of parameters
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Figure 10
Phase probability for one reflection in an SIR experiment. Fbest is the
centroid of the distribution. The map calculated with |Fbest| exp(i�best) [or
m|FP| exp(i�best)hcos��i, where m is the figure of merit] has least error.
m = 0.23 implies a 76� phase error, since cos (76) = 0.23.

Figure 9
The lack of closure.

Figure 8
Harker construction for SIR.

Figure 7
Estimation of the native protein phase for SIR.

Figure 6
Argand diagram for SIR. |FP| is the amplitude of a reflection for the
native crystal and |FPH| is that for the derivative crystal.



(Otwinowski, 1991; de La Fortelle & Bricogne, 1997; Pannu et

al., 2003; Pannu & Read, 2004). Such methods are employed in

MLPHARE (Collaborative Computational Project, Number

4, 1994), SHARP, BP3 and Phaser (McCoy et al., 2007).

Fig. 11 shows the electron density of part of the unit cell

of the sialidase from Salmonella typhimurium (Crennell et al.,

1993) phased using a single mercury derivative. Although

the protein–solvent boundary is partly evident, the electron

density remains uninterpretable.

The use of more than one heavy-atom derivative in multiple

isomorphous replacement (MIR) can break the phase ambi-

guity, as shown in Fig. 12 for a perfect case where the three

circles overlap at one phase angle.

The phase probability is obtained by multiplying the indi-

vidual phase probabilities together, as shown in Fig. 13 for the

same reflection as in Fig. 10, but this time three heavy-atom

derivatives have resulted in a sharp unimodal distribution with

a concomitantly high figure of merit.
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Figure 13
Phase probability for one reflection. (a) Single derivative in an SIR
experiment. (b) Three derivatives. In an MIR experiment P(�P) /
�exp(�"i

2/2Ei
2), where i is summed from 1 up to the number of

derivatives.

Figure 14
Density-modification techniques. (a) Solvent flattening uses automated
methods to define the protein–solvent boundary and then modifies the
solvent electron density to be a certain fixed value. (b) Histogram
matching redefines the values of electron-density points in a map so that
they conform to an expected distribution of electron-density values. (c)
Noncrystallographic (NCS) symmetry averaging imposes identical
electron-density values to points related by local symmetry, in this case
a trimer of ducks that forms the asymmetric unit. The local NCS
symmetry operators relating points in duck A to ducks B and C are
shown.

Figure 12
Harker diagram for MIR with two heavy-atom derivatives.

Figure 11
(a) An uninterpretable 2.6 Å SIR electron-density map with the final C�

trace of the structure superimposed. �(x) = (1/V)
P

m|FP| exp(i�best)
	 exp(�2�ih
x). (b) A small section of the map with the final structure
superimposed.



4. Phase improvement

It is rare that experimentally determined phases are suffi-

ciently accurate to give a completely interpretable electron-

density map. Experimental phases are usually the starting

point for phase improvement using a variety of density-

modification methods, which are also based on some prior

knowledge of structure. Solvent flattening, solvent flipping,

histogram matching and noncrystallographic averaging are the

main techniques that are used to modify electron density and

improve phases (Fig. 14). Solvent flattening is a powerful

technique that removes negative electron density and sets the

value of electron density in the solvent regions to a typical

value of 0.33 e Å�3, in contrast to a typical protein electron

density of 0.43 e Å�3. Automatic methods are used to define

the protein–solvent boundary; they were initially developed

by Wang (1985) and were extended into reciprocal space by

Leslie (1988). A variation of this method that avoids the

problem of bias introduced by iterative solvent flattening and

phase combination is the so-called solvent-flipping method

(Abrahams & Leslie, 1996). Histogram matching alters the

values of electron-density points to concur with an expected

distribution of electron-density values. Noncrystallographic

symmetry averaging imposes equivalence on electron-density

values when more than one copy of a molecule is present in the

asymmetric unit. These methods were originally encoded into

programs such as DM (Cowtan & Zhang, 1999), RESOLVE

(Terwilliger, 2002) and CNS (Brünger et al., 1998). Automatic

interpretation of the electron-density map by tracing the

main chain and side chains is another powerful method for

improving phases. The program ARP/wARP is particularly

useful and performs cycles of placing dummy atoms into

electron-density maps followed by refinement, model building

and update (Langer et al., 2008). Similar

methods are available in RESOLVE,

particularly as part of the PHENIX

suite of programs that cycle between

phase improvement, model building and

refinement (Adams et al., 2002). For

extensive automatic interpretation,

including assignment of side chains,

these methods generally require data to

at least 2.7 Å resolution. However,

other methods allow the identification

of �-helices and �-strands at lower

resolution, such as Cowtan’s Buccaneer

discussed elsewhere in this issue. In

SHELXE, Sheldrick uses a character-

istically novel approach to density

modification (Sheldrick, 2008) and a

more recent version of his program

incorporates chain-tracing, again

discussed elsewhere in this issue.

Density-modification techniques will

not turn a bad map into a good one, but

they will certainly improve promising

maps that show some interpretable

features.

Density modification is a cyclic

procedure, involving the back-transfor-

mation of the modified electron-density

map to give modified phases, the

recombination of these phases with the

experimental phases (so as not to throw

away experimental reality) and the

calculation of a new map which is then
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Figure 16
(a) 2.6 Å MIR electron density. (b) Electron density after solvent flattening and histogram matching
in DM. The solvent envelope determined by DM is shown in green.

Figure 15
Phase improvement by density modification.



modified and so the cycle continues to convergence. If native

data have been collected to a higher resolution, such methods

can also be used to provide phases beyond the resolution for

which experimental phase information is available. In such

cases, the modified map is back-transformed to a slightly

higher resolution in each cycle to provide new phases for a

subset of higher resolution reflections. The process is illu-

strated in Fig. 15. An example of the application of solvent

flattening and histogram matching using DM is shown in

Fig. 16 for the S. typhimurium sialidase phased on three

derivatives.

5. Anomalous scattering

5.1. The anomalous scattering factor

The atomic scattering factor contains three components: a

normal scattering term f0 that is dependent on the Bragg angle

and two terms f 0 and f 00 that are not dependent on scattering

angle but are dependent on wavelength. These latter two

terms represent the anomalous scattering that occurs at the

absorption edge when the X-ray photon energy is sufficient to

promote an electron from an inner shell. The dispersive term

f 0 modifies the normal scattering factor, whereas the absorp-

tion term f 0 0 is 90� advanced in phase. Friedel’s law holds that

|Fhkl| = |F�h�k�l|; however, in the presence of an anomalous

scatterer Friedel’s law breaks down, giving rise to anomalous

differences that can be used to locate the anomalous scat-

terers. Fig. 17 shows the variation in anomalous scattering at

the K edge of selenium and Fig. 18 shows the breakdown of

Friedel’s law.

The anomalous or Bijvoet difference can be used in the

same way as the isomorphous difference in Patterson or direct

methods to locate the anomalous scatterers. Phases for the

native structure factors can then be derived in a similar way to

the SIR or MIR case. Anomalous scattering can be used to

break the phase ambiguity in a single isomorphous replace-

ment experiment, leading to SIRAS (single isomorphous

replacement with anomalous scattering). Note that because of

the 90� phase advance of the f 00 term, anomalous scattering

provides orthogonal phase information to the isomorphous

term. In Fig. 19 there are two possible phase values symme-

trically located about f 00 and two possible phase values

symmetrically located about FH. MIRAS is the term used to

describe multiple isomorphous heavy-atom replacement using

anomalous scattering.

5.2. MAD

Isomorphous replacement has several problems: non-

isomorphism between crystals (unit-cell changes, reorienta-

tion of the protein, conformational changes, changes in salt

and solvent ions), problems in locating all the heavy atoms,

problems in refining heavy-atom positions, occupancies and

thermal parameters and errors in intensity measurements. The

use of the multiwavelength anomalous diffraction/dispersion

(MAD) method can at least overcome the non-isomorphism

problems if there is no significant radiation damage. Data are
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Figure 19
Harker construction for SIRAS.

Figure 18
Breakdown of Friedel’s law when an anomalous scatterer is present.
f(�, �) = f0(�) + f 0(�) + if 0 0(�). |Fhkl| 6¼ |F�h�k�l| or |FPH(+)| 6¼ |FPH(�)|.
�F� = |FPH(+)| � |FPH(�)| is the Bijvoet difference.

Figure 17
Variation in anomalous scattering signal versus incident X-ray energy in
the vicinity of the K edge of selenium.



collected from a single crystal at several wavelengths, typically

three, in order to maximize the absorption and dispersive

effects. Usually, wavelengths are chosen at the absorption (f 00)

peak (�1), at the point of inflection on the absorption curve

(�2), where the dispersive term f 0 (which is the derivative of

the f 00 curve) has its minimum, and at a remote wavelength (�3

and/or �4) to maximize the dispersive difference to �2. Fig. 20

shows a typical absorption curve for an anomalous scatterer,

together with the phase and Harker diagrams.

The changes in structure-factor amplitudes arising from

anomalous scattering are generally small and require accurate

measurement of intensities. The actual shape of the absorption

curve should be determined experimentally by a fluorescence

scan on the crystal at the synchrotron, as the environment

of the anomalous scatterers can affect the details of the

absorption. There is a need for excellent optics to ensure

accurate wavelength setting with a minimum of wavelength

dispersion. Generally, all data are collected from a single

cryocooled crystal with high multiplicity to increase the

statistical significance of the measurements and data are

collected with as high a completeness as possible. The signal

size can be estimated using equations similar to those derived

by Crick and Magdoff for isomorphous changes. Fig. 21 shows

a predicted signal for the case of two Se atoms in 200 amino

acids calculated using Ethan Merritt’s web-based calculator

(http://www.bmsc.washington.edu/scatter/AS_index.html).

Note that the signal increases with resolution.

5.3. SAD

Increasing numbers of protein structures are now being

phased using only a single set of diffraction data by the single-

wavelength anomalous dispersion/diffraction (SAD) method

(Wang, 1985). The first demonstration of this was for the

46-residue protein crambin, which was phased with six

intrinsic sulfurs using in-house data collected at the Cu K�
wavelength (Hendrickson & Teeter, 1981). Subsequently, it

was demonstrated for the 129-residue hen egg-white lysozyme

(Dauter et al., 1999) and the method has now become routine

(Dauter et al., 2002; Dodson, 2003). The SAD experiment only

provides measurements of the anomalous, or Bijvoet, differ-

ences �F� = |FPH(+)| � | FPH(�)|. These are then used as

estimates of the heavy-atom contribution to the scattering and

enable direct or Patterson methods to be used to derive the

positions of the heavy-atom substructure. The Harker con-

struction for a single reflection from a hypothetical SAD

experiment (Fig. 22) shows that once the heavy-atom sub-

structure is known the calculated amplitude and phase of this

contribution can be drawn (FH). However, an ambiguity

remains in the phase of the protein structure factor, with

values symmetrically located around the absorption contri-

bution (f 0) to the anomalous scattering. This phase ambiguity

has to be broken through density-modification procedures,

which have become much more powerful in recent years. In its

purest form, SAD can simply utilize the intrinsic anomalous

scatterers present in the macromolecule, such as the S atoms

of cysteine and methionine or bound ions. The challenge is

in maximizing and measuring the very small signal, since the

Bijvoet ratio can be as low as 1% when the typical merging R

factor is several times this value. The trick lies in making

multiple measurements of reflections at an appropriate wave-

length in order to achieve a high multiplicity that will give

statistically accurate measurements of the anomalous differ-

ence. The data should also be as complete as possible.

There has been much discussion of data-collection strate-

gies, scaling protocols and the best wavelength at which to

collect data. A fascinating and comprehensive study from a

group at EMBL Hamburg showed that a wavelength of �2 Å

gave the maximum anomalous signal for a range of proteins
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Figure 20
MAD phasing. (a) Typical absorption curve for an anomalous scatterer.
(b) Phase diagram. |FP| is not measured, so one of the data sets is chosen
as the ‘native’. (c) Harker construction.



containing anomalous scatterers such as S, P, Ca, Xe, Cl or Zn

(Mueller-Dieckmann et al., 2007). The availability of Cr K�
radiation, which has a wavelength of 2.29 Å, is leading to

the use of chromium anodes for in-house phasing of macro-

molecules based on S (Yang et al., 2003; Watanabe et al., 2005)

or Se atoms (Xu et al., 2005).

Two examples are now given that show the power of the

SAD method. The first involves phasing based on S atoms

(S-SAD) and the second is based on phasing from a single

Hg atom (Hg-SAD). The data sets and tutorial guides can

be found at http://www.st-andrews.ac.uk/~glt2/CCP4 for those

who wish to experiment with the data handling and structure

solution.

5.4. S-SAD example

This example uses highly accurate S-SAD data collected to

a resolution of 2.1 Å on beamline BM14 of the ESRF at a

wavelength of 1.722 Å. Two orientations of the crystal were

used to collect 760� of data with 30-fold multiplicity. The

merging R factor of the data was 0.067 overall and was 0.252 in

the highest resolution shell. The protein consists of 238 resi-

dues (27.3 kDa) and contains nine methionines and no

cysteines, giving an estimated signal of 1% for the Bijvoet

ratio (�F�/F; http://www.ruppweb.org/new_comp/anom-

alous_scattering.htm). If the data had been collected in-house

using Cu K� radiation the signal would have been �0.8%,

whereas if data were collected at the K edge of sulfur (�5 Å

wavelength) the signal would be 6%. There are many practical

reasons why collecting data at such a long wavelength is not

viable, for example air absorption and the spreading out of the

diffraction pattern. A high-resolution data set was also

collected at the ESRF to a resolution of 1.45 Å at a wave-

length of 0.9762 Å. The crystals belonged to space group

P212121, with one molecule in the asymmetric unit and an

estimated solvent content of 40%. SHELXC was used to read

the scaled unmerged intensity data processed using HKL-2000

(Otwinowski & Minor, 1997) and to prepare a list of heavy-

atom structure-factor estimates derived from the anomalous

differences. The statistics of the S-SAD data are shown in Fig.

23 and suggest that the anomalous signal [hd00/sigi or h(�F�)/

�(�F�)i] is detectable to about 2.7 Å. SHELXD (Sheldrick,

2008) was then used with data to 2.7 Å resolution to find the

substructure of anomalous scatterers. SHELXE (Sheldrick,

2008) was used to calculate the centroid phases from the

Harker construction and to perform density modification to

break the phase ambiguity. Note that both hands of the heavy

atoms need to be tried, as an arbitrary choice of hand is made

in the determination of the heavy-atom positions. In SHELXE

this simply requires running the program again with an extra

switch to reverse the hand. SHELXD appears to have found

all nine sulfur sites and four additional sites that may be

occupied by solvent ions (Fig. 23).

The electron-density maps at 2.1 Å calculated using the

phases derived from these heavy atoms before and after

density modification are shown in Fig. 24 and the latter clearly

shows the protein–solvent boundary after density modifica-
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Figure 22
Harker construction for SAD.

Figure 23
(a) Statistics from SHELXC showing the anomalous signal for the S-SAD
example. (b) Heavy-atom sites determined by SHELXD.

Figure 21
Estimation of signal size. The expected Bijvoet ratio is r.m.s.(�F�)/
r.m.s.(|F|) ’ (NA/2NT)1/2(2f 0 0A/Zeff). The expected dispersive ratio is
r.m.s.(�F��)/r.m.s.(|F |) ’ (NA/2NT)1/2[|f 0A(�i) - f 0A(�j)|]/Zeff, where NA is
the number of anomalous scatterers, NT is the total number of atoms in
the structure and Zeff is the normal scattering power for all atoms (6.7 e�

at 2� = 0).



tion. Incorporation of the 1.45 Å data into SHELXE allowed

phase extension to provide a highly interpretable map

(Fig. 25b). If data are available to at least 2.0 Å resolution then

the ‘free-lunch’ algorithm in SHELXE can be invoked (Usón

et al., 2007). In this case, as data were available to 1.45 Å,

phases were calculated to 1.0 Å using the free-lunch algorithm,

producing a remarkable map from which the sequence of the

protein could be easily read (Fig. 25c). Note that this is not a

real 1.0 Å map, as the extended data have been generated and

not experimentally derived, but the free-lunch algorithm can

be a powerful tool to improve the phases of experimentally

measured data. Finally, the latest version of SHELX incor-

porates an autotracing algorithm that attempts to create a

polyalanine model (shown in Fig. 26), the main use of which

is to further improve the phases. SHELXE built 160 residues

into the map, far less than the 238 residues expected; however,

the first 60 residues of this protein are disordered and are not

visible in the electron density. In this S-SAD example, the final

phases from SHELXE were used to automatically build a

model fitted to the sequence using ARP/wARP (Cohen et al.,

2008).

5.5. Hg-SAD example

The second example involves data that

were collected in-house from a Hg-deri-

vatized protein of 440 residues using

Cu K� radiation. The structure was

actually solved using SIRAS (Xu et al.,

2009), but it is interesting to note that the

structure could have been solved using

just the anomalous scattering information

in the Hg-derivative data set. This

example shows that it is worth looking at

the phasing from a single-derivative data

set in instances where the derivative is

non-isomorphous with the native. The Hg

derivative diffracted to 2.1 Å resolution

and a data set was collected with only

fourfold multiplicity. The cubic crystals belonged to space

group P213, with unit-cell parameter a = 125.3 Å, and had a

monomer in the asymmetric unit and a solvent content of

64%. The protein contained one Hg atom per monomer,

giving an estimated Bijvoet ratio of 2.7% for Cu K� (1.54 Å),

only slightly less than the signal of 3.6% that would be

obtained at the Hg LIII edge (1.009 Å). SHELXC showed that

the anomalous signal was present to �3.2 Å; therefore, data

limited to this resolution were input into SHELXD, which

readily found the single Hg site. SHELXE was used to

determine the phases to 2.1 Å resolution and density modifi-

cation with autotracing in SHELXE produced a polyalanine

model that consisted of 389 of the 432 ordered residues of the

final model (Fig. 27).

6. Cross-crystal averaging

Protein crystallography is not a black-box technique for every

protein; there are still challenges to be met in cases where

MAD or SAD techniques cannot be used to derive a high-
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Figure 25
Improving phases for the S-SAD problem. (a) 2.1 Å resolution density-modified map. (b) 1.45 Å resolution phase-extended map. (c) ‘1.0 Å resolution’
free-lunch map.

Figure 24
2.1 Å electron-density map for the S-SAD example before and after density modification using
SHELXE.



resolution map. On occasion two or more crystal forms of a

protein are available, where low-resolution phases may be

available for one crystal form but high-resolution data are

available for another crystal form. Cross-crystal averaging

involves mapping the electron density from the one unit cell

into the other. Phases can then be derived for the new crystal

form and through averaging of density between crystal forms

and possibly phase extension as part of a density-modification

procedure one can bootstrap the phases to high resolution.

The procedure is outlined in Fig. 28.

One example of the power of cross-crystal averaging is that

of Newcastle disease virus haemagglutinin–neuraminidase

(HN), the structure solution of which was plagued with non-

isomorphism problems (Crennell et al., 2000). Native crystals

from the same crystallization drop could have significantly

different unit-cell dimensions. The protein was derived from

virus grown in embryonated chicken eggs, so SeMet methods

were out of the question. Most heavy-atom derivatives were

non-isomorphous with the native crystals and with one

another. A platinum derivative was found that gave a clear

peak in an anomalous Patterson, which led to an attempt at

MAD phasing, but the signal was just too small. The P212121

unit cell had dimensions that varied as follows: a = 70.7–74.5,

b = 71.8–87.0, c = 194.6–205.4 Å. In the end, cross-crystal

averaging was used to bootstrap from a poor uninterpretable

6.0 Å resolution MIR map out to a clearly interpretable 2.0 Å

resolution map (Fig. 29). Four data sets were chosen for cross-

crystal averaging in DMMULTI and were chosen on the

criteria that they were (i) as non-isomorphous as possible to

one another and (ii) at as high a resolution as possible. These

were a pH 7 room-temperature data set to 2.8 Å resolution

(a = 73.3, b = 78.0, c = 202.6 Å), for which MIR phases were

available to 6.0 Å, a pH 6 room-temperature data set to 3.0 Å
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Figure 26
Autotraced polyalanine model produced by SHELXE superimposed on
the density-modified electron-density map at 1.45 Å resolution.

Figure 27
A SHELXE-derived 2.1 Å resolution electron-density map phased from
a Hg-SAD data set with superimposed polyalanine trace produced by
SHELXE. The view is down the crystallographic threefold axis.

Figure 28
Cross-crystal averaging. Two crystal forms of the same protein for which
phase information to low resolution is known for one form (left) and
high-resolution data exist but no phase information is known for another
form (right).



resolution (a = 72.0, b = 83.9, c = 201.6 Å), a pH 4.6 cryocooled

data set to 2.5 Å resolution (a = 71.7, b = 77.9, c = 198.2 Å) and

a pH 4.6 cryocooled data set to 2.0 Å resolution (a = 72.3,

b = 78.1, c = 199.4 Å). The power of the method lies in the

fact that the different unit cells are sampling the molecular

transform at different places. Like most things the idea is not

new and was indeed used by Bragg and Perutz in the early

days of haemoglobin (Bragg & Perutz, 1952), when they

altered the unit cell of the crystals by controlled dehydration

in order to sample the one-dimensional transform of the

molecules in the unit cell. This paper is worth a read, if only for

the wonderful inclusion of random test data in the form of

train times between London and Cambridge!

7. Conclusion

The phase problem is fundamental and will never go away;

however, its solution is now fairly routine thanks to MR,

MAD and SAD. The wider availability of synchrotron sources,

improvements in detector technologies, cryocrystallography

and the development of more sophisticated software packages

have contributed to the routine use of MAD, and increasingly

SAD, to phase novel macromolecular structures within

minutes of collecting the diffraction data. SAD is an unfor-

tunate acronym for a method that can bring immense joy to

the structural biologist!

I thank the Scottish Structural Proteomics Facility, funded

by the Scottish Funding Council and the BBSRC, for the data
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stimulating discussions. I would like to

thank Ethan Merritt for allowing me to
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